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Abstract
A new single susceptibility scheme of macroscopic Maxwell equations has been derived by
applying a long wavelength approximation to the general form of microscopic response
represented by the simultaneous integral equations of induced current density and vector
potential. The result turns out to be more general than the conventional ‘E,D,B,H’ scheme.
The new (single) susceptibility contains the contributions of electric and magnetic polarizations
together with their mutual interference effect in its different order terms of wavevector k. The
conventional description via ε and μ can be reproduced only in the absence of chiral symmetry,
under the additional condition that magnetic susceptibility defined with respect, not to H , but to
B should be used. In the presence of chiral symmetry, the phenomenological
Drude–Born–Fedorov constitutive equations cannot be justified by this microscopic approach.

1. Introduction

Maxwell equations (M-eqs), one of the most fundamental
theoretical schemes of physics, have two forms, i.e. micro-
and macroscopic ones. The latter is an approximate scheme
of the former appropriate for macroscopic matter systems.
Historically, however, the former was first proposed when there
was neither quantum mechanics nor relativity theory, so that it
was a phenomenology. At the beginning of the 20th century,
the microscopic form based on the particle picture of matter
was proposed [1], and this, combined with quantum mechanics
and relativity, led to quantum electrodynamics (QED), which
is one of the most accurate theories of physics [2, 3].

There have been various attempts to derive the macro-
scopic M-eqs from the microscopic M-eqs based on the particle
picture of matter [4]. Thereby, the standard way of thinking is
as follows. The first step is to admit that the macroscopic av-
erage of the charge and current densities in the microscopic
M-eqs can be expressed in terms of electric (P ) and mag-
netic polarizations (M ). Then, one separates (a) charge den-
sity ρ into true (ρt) and polarization charge density (ρp), and
(b) the transverse component of current density into the con-
tributions of electric and magnetic polarizations, ∂P /∂ t and
c∇×M , respectively. By using the new variables P , M , D =
E + 4πP , and H = B − 4πM , one can rewrite the micro-
scopic M-eqs into the macroscopic M-eqs. In the case of linear

response, one introduces (macroscopic) electric and magnetic
susceptibilities, χe and χm, respectively, via P = χeE and
M = χmH , which define dielectric constant and magnetic
permeability as ε = 1 + 4πχe, μ = 1 + 4πχm.

In terms of symmetry argument and quantum mechanical
calculation, one can argue about the frequency and wavevector
dependence of susceptibilities, so that the macroscopic M-
eqs at this level can be regarded as semiquantitative rather than
purely phenomenological theory. These types of macroscopic
M-eqs in terms of the field variables ‘E,D,B,H’ have been
successfully used for studies of macroscopic electromagnetic
(EM) response in a vast area, and played an indispensable role
in the great development of modern physics and technology in
the 20th century.

However, in spite of the great success, the macroscopic M-
eqs seem to be incomplete in the rigorous sense of uniqueness
and consistency, because (i) the unique way of separation (a)
and (b) mentioned above is not known, and (ii) the question
why the number of susceptibilities is different between the
micro- and macroscopic M-eqs is not answered clearly. (In
the microscopic M-eqs we need only one susceptibility tensor
between induced current density J and vector potential A,
while we need two, χe and χm, in the macroscopic M-eqs [5].)
In addition to these problems, there are some other questions,
(iii) why the usual treatment of spin resonance [6] and orbital
magnetic dipole transition [7] lead to different wavevector

0953-8984/08/175202+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/17/175202
mailto:riken-cho@mosk.tytlabs.co.jp
http://stacks.iop.org/JPhysCM/20/175202


J. Phys.: Condens. Matter 20 (2008) 175202 K Cho

dependence of μ, i.e. O(k0) for the former, and O(k2) for
the latter, and (iv) why the conventional dispersion equation
(ck/ω)2 = εμ have the contributions of electric and magnetic
dipole transitions as a product on the rhs of the equation.
Since, in low symmetry, there is no distinction between these
two types of transitions, one should generally expect their
contributions as a sum rather than a product.

There are proposals of single susceptibility scheme of
macroscopic M-eqs by Agranovich et al [8] and Il’inskii
and Keldysh [9]. Though their motivation is similar to (ii)
mentioned above, their results do not answer all the questions
mentioned above, and the relation with the conventional
scheme is not clarified. (More discussion is given in
section 3.2.) The purpose of this paper is to give a new
single susceptibility scheme, which provides answers to all
the questions (i)–(iv) and clarifies the relationship with the
conventional ‘E,D,B,H’ scheme.

In order to make a more complete form of single
susceptibility theory, we take a new approach to derive the
macro- from the microscopic M-eqs, i.e. we apply the long
wavelength approximation (LWA) to the microscopic EM
response of matter. This method relies only on the well-defined
Lagrangian of matter and EM field and standard quantum
mechanics, which allows mathematically clear-cut treatment,
without using empirical knowledge and/or model-dependent
concepts. It turns out that the new scheme is more general than
the ‘E,D,B,H’ scheme. In particular, it provides the first-
principles macroscopic susceptibility, including the case of
chiral symmetry, where electric and magnetic dipole transitions
are mixed with one another.

The macroscopic M-eqs are still a main tool for the stud-
ies of photonic crystals [10], near-field optics [11], left-handed
or metamaterials [12, 13], etc, it is desirable to establish a
single susceptibility scheme which allows the first-principles
treatment of coexisting electric and magnetic polarizations.
It would also contribute to teaching M-eqs through a mathe-
matically clear description of the hierarchical structure of the
microscopic response theory and the macroscopic M-eqs.

2. Formulation

2.1. Microscopic response theory

As a reliable basis of the new macroscopic M-eqs, we first
describe the microscopic response theory within the semi-
classical regime. This consists of the microscopic M-eqs and
the microscopic constitutive equation, and the response is
given as the solution of simultaneous integral equations of
vector potential and current density. Though this part of the
theory is well established, we describe it in detail below, since
its generality is the guarantee of the soundness of the new
macroscopic M-eqs.

We start with the general Lagrangian of charged particles
and EM field

L =
∑

�

{
1

2
m�v

2
� − e�φ(r�) + e�

c
v� · A(r�)

}

+
∫

dr
1

8π

{(
1

c

∂A

∂ t
+ ∇φ

)2

− (∇ × A)2

}
, (1)

where A and φ are vector and scalar potentials, e�, r�, and v�

the charge, coordinate, and velocity of the �th particle. The
least action principle of this Lagrangian provides ‘microscopic
M-eqs’ and the ‘Newton equation of each particle under
Lorentz force’, so that this is a sufficiently reliable starting
point. The Hamiltonian for the particles in an EM field is
derived from this Lagrangian, in Coulomb gage (∇ · A = 0),
as

HM =
∑

�

1

2m�

[
p� − e�

c
A(r�)

]2

+ 1

2

∑ ∑

��=�′

e�e�′

|r� − r�′ | . (2)

The Coulomb potential term is the sum of the scalar potential
related terms (the integrals of eφ and (1/c)(∇φ)2). Since this
term is usually regarded as a part of the matter Hamiltonian,
the EM field interacting with the matter is represented by
the transverse (T) field, A, alone. If necessary, we can add
relativistic correction terms, such as spin–orbit interaction,
spin Zeeman interaction, etc to make the Hamiltonian general
enough for the problems of materials science. The EM
response of such materials can be treated by simply adding the
Hamiltonian of the free EM field. It becomes a semi-classical
EM response theory by quantizing the particle variables, and
(non-relativistic) QED by further quantizing the EM field, so
that this Lagrangian can be a fully general starting point of EM
response theory within the non-relativistic regime.

The fundamental equations of semi-classical EM response
are a set of M-eqs and constitutive equation(s). The latter is
the relation between induced polarization(s) and source EM
field in terms of susceptibility. This set of equations gives the
self-consistent solution of EM field and induced polarizations,
especially of their transverse components, which leads to the
coupled eigenmodes, such as polaritons. To calculate the
induced polarization as a linear response, we use the A-linear
term of (2), Hlin = (−1/c)

∫
dr J · A, where J is the current

density operator J(r) = ∑
� e�v�δ(r − r�). In the presence

of spin magnetization Mspin(r) = ∑
� β�s�δ(r − r�), where

β�s� is the spin magnetization of the �th particle with spin
s�, we need to consider also its interaction with EM field,
i.e. the spin Zeeman interaction HsZ = − ∫

drMspin · B =
(−1/c)

∫
drJspin · A, where the spin induced current density

is defined as Jspin(r) = c∇ × Mspin(r). Thus we can take the
sum

Hint = −1

c

∫
dr I(r) ·A(r, t), (I = J + Jspin) (3)

as the generalized interaction Hamiltonian containing both
orbital and spin current densities. Correspondingly, the matter
Hamiltonian H0 (A = 0 term of HM) should contain the
remaining terms of relativistic correction. In this way, we
can prepare the matter Hamiltonian and matter–EM field
interaction Hint model-independently.

Induced polarization is calculated via standard time-
dependent perturbation theory, found in various textbooks,
e.g. [14–16], so that we only give an outline. The microscopic
constitutive equation is obtained by calculating the expectation
value of the current density operator with respect to the
matter wavefunction at time t , 〈�(t)|I(r)|�(t)〉. The time
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evolution of � is governed by the Schrödinger equation
ih̄∂�/∂ t = (H0 + Hint)� . In the interaction representation
� = exp(−iH0τ/h̄)�̃ , the Schrödinger equation takes the
form ih̄∂�̃/∂ t = H ′(t)�̃ , where

H ′(τ ) = exp(iH0τ/h̄)Hint exp(−iH0τ/h̄). (4)

For linear response we only need the lowest-order iterative
solution

�̃(t) = �̃(−∞) − i

h̄

∫ t

−∞
dτ H ′(τ )�̃(−∞) + · · · , (5)

where we assume that the interaction Hint is adiabatically
switched on in the remote past to the matter state in the ground
state |0〉 of the Hamiltonian H0, i.e. �̃(−∞) = |0〉.

The A linear terms of the expectation value 〈�(t)|I(r)|
�(t)〉 originate from those of �(t) and of the operator I . We
separate the A dependent part of I (arising from the velocity
term v = (p − eA/c)/m) as

I(r) = Î(r) − 1

c
N̂(r)A(r, t) (6)

where N̂(r) = ∑
�(e

2
�/m�)δ(r − r�). In terms of these

notations, we can evaluate the A linear part of the induced
current density (with frequency ω) as

I(r, ω) = −1

c
〈0|N̂ (r)|0〉A(r, ω)

+ 1

c

∑

ν

[gν(ω)Î0ν(r)Fν0(ω) + hν(ω)Îν0(r)F0ν(ω)],
(7)

where Îμν(r) = 〈μ|Î(r)|ν〉 with H0|μ〉 = Eμ|μ〉, etc,

Fμν(ω) =
∫

dr Îμν(r) ·A(r, ω) (μ = 0, or ν = 0),

(8)
and

gν(ω) = 1

Eν0 − h̄ω − i0+ , hν(ω) = 1

Eν0 + h̄ω + i0+ ,

(9)
Eν0 = Eν − E0. The first term of (7) mostly reflects the
ground state charge density of electrons, which, in the LWA,
leads to −(e2n0/mc)A, where n0, m, e are the density, charge,
and mass of electrons, respectively. This contributes to the
macroscopic susceptibility as an additional constant. This is
one way of treating this term, but there is another way, i.e. to
renormalize it into the second term of (7) as

I(r, ω) = 1

c

∑

ν

[ḡν(ω)Î0ν(r)Fν0(ω) + h̄ν(ω)Îν0(r)F0ν(ω)],
(10)

where

ḡν(ω) = gν(ω) − 1

Eν0
, h̄ν(ω) = hν(ω) − 1

Eν0
. (11)

For this manipulation, we make use of the commutation
relation between current density and dipole density operators,

and LWA is used for the vector potential. The details are given
in sections 2.4 and 2.5 of [16].

The nonlocal relationship between induced current density
and source EM field should be noted. In the microscopic scale,
the cause A and the result I can occur at different positions, as
far as they are within the extension of relevant wavefunctions.
Since the coherence of matter wavefunction is important in
nanostructures, this kind of susceptibility plays an essential
role in the study of nanostructures.

The microscopic response is obtained by solving (10) with
the microscopic M-eq

1

c2

∂2A

∂ t2
− ∇2A = 4π

c
IT, (12)

where IT is the transverse component of the induced current
density. Though (10) contains the longitudinal (L) part, only
the T component is necessary to obtain the self-consistent
solution. Once it is obtained, one can use it in (10) to calculate
the L component of I .

Equation (12) is generally an integro-differential equation
for A, but it can be rewritten as a set of simultaneous linear
equations of {Fν0, F0ν}, because of the separable form of the
microscopic susceptibility as an integral kernel. This rewriting
facilitates the problem very much for practical applications.
Since the microscopic structure of induced current density
is included via the matrix elements of Î(r), this theory is
quite suitable for the study of nanostructures. The details of
this theory are given in [16] together with various examples
of applications including nonlinear response. In this paper,
we use this theory as a reliable basis for the derivation of
macroscopic M-eqs as a new example of an application.

2.2. LWA of microscopic response theory

If the LWA is valid, the spatial variation of vector potential
A(r, ω) and induced current density I(r, ω) will be weak in
comparison with that of the matrix elements of the current
density. Thus, the variables A and I are represented by their
long wavelength components alone. The form of M-eqs for
A, (12), is kept unaltered under the LWA. In the Fourier
representation, we have

(
−ω2

c2
+ k2

)
Ã(k, ω) = 4π

c
ĨT(k, ω) (13)

with the understanding that only small k components have
appreciable amplitudes. A similar expression holds for the
constitutive equation (10) as

Ĩ(k, ω) = 1

c

∑

ν

[ḡν(ω)Î0ν(k)Fν0(ω) + h̄ν(ω)Îν0(k)F0ν(ω)].
(14)

Here also, only small k components are considered to have
appreciable amplitudes.

The factor Fμν(ω) can be rewritten as

Fμν(ω) =
∑

k′
Ĩμν(−k′) · Ã(k′, ω), (15)
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which in general contains all the k′-components. If LWA is
valid, however, only small k′ s make the central contribution,
which is extracted as follows. For small k, we may take the
first few terms of the Taylor expansion (around r̄) as

Ĩμν(k) = 1

Vn

∫
dr exp[−ik · r]Îμν(r)

= exp(−ik · r̄)

Vn
(Īμν − ik · Q̄μν) (16)

where μ = 0 or ν = 0, Vn is the normalization volume, and

Īμν =
∫

dr Îμν(r), Q̄μν =
∫

dr (r − r̄)Îμν(r) (17)

represent the moments of the electric dipole (E1) and magnetic
dipole (M1) (plus electric quadrupole (E2)) transitions,
respectively. We choose r̄ for each transition ‘μ ↔ ν’ in
such a way (e.g. at the center of an impurity atom) that the
moment Q̄ represents its physical meaning correctly. Then,
the relation between Ĩ(k, ω) and Ã(k′, ω) obtained from (14)
is generally not diagonal with respect to k. However, if the
macroscopic medium obtained by the LWA has translational
symmetry, as usually anticipated, we may take the diagonal
part Ĩ(k, ω) = χem(k, ω) · Ã(k, ω), where

χem(k, ω) =
∑

ν

Nν

c

[
ḡν(ω)(Ī0ν − ik · Q̄0ν)(Īν0 + ik · Q̄ν0)

+ h̄ν(ω)(Īν0 − ik · Q̄ν0)(Ī0ν + ik · Q̄0ν)
]
. (18)

Here, we have replaced the factor 1/Vn with the number
density Nν of localized states (of impurities, defects, etc)
corresponding to the transition 0 ↔ ν, and the summation over
ν is to be taken only once for the same localized transitions at
different sites.

This is the general susceptibility of the present
macroscopic scheme, and is the only susceptibility required
to determine the complete (linear) response. It contains
the contributions from both electric and magnetic dipole
transitions, together with their mixing (k-linear) terms. It
should be noted that the mixing terms remain nonvanishing in
the case of chiral symmetry, where each excited state |ν〉 is
active to both E1 and M1 transitions. In this case, we cannot
properly define χe and χm, or ε and μ. In the absence of chiral
symmetry, on the other hand, E1 and M1 characters are not
mixed, so that the k-linear terms vanish, and the susceptibility
turns out to be a sum of E1 and M1 types of terms. This is the
situation where we can use ε and μ, and only in this case, the
dispersion equation of the present formulation coincides with
the conventional one in terms of ε and μ, as will be discussed
below in more detail.

2.3. Dispersion equation of plane waves

The macroscopic constitutive equation obtained above by
LWA is described by the susceptibility tensor χem(k, ω).
Substituting the expression of Ĩ(k, ω) in the source term
(4π/c)Ĩ of (13), we get the equation

(
c2k2

ω2
− 1

)
Ãξ = 4πc

ω2

∑

η

(χem)ξη Ãη (19)

where ξ, η are the two Cartesian coordinate axes perpendicular
to k. The condition for the finite amplitude solution is the
vanishing of the determinant of the coefficient (2 × 2) matrix,
i.e.

det

∣∣∣∣
c2k2

ω2
− 1 − 4πc

ω2
χem(k, ω)

∣∣∣∣ = 0. (20)

This is the dispersion relation in the present scheme of
macroscopic M-eqs. It should be compared with the
conventional form of dispersion equation

det

∣∣∣∣
c2k2

ω2
− εμ

∣∣∣∣ = 0, (21)

where the T components of the tensors ε and μ should be
inserted.

Apparently, the two dispersion equations are different, be-
cause the contributions of electric and magnetic polarizations
appear as a product in (21), while in (20) as a sum (including
an interference term). Moreover, the new result claims only
one susceptibility, while there are two of them in the conven-
tional formula. In view of the possible mixing of E1 and M1
transitions in the case of chiral symmetry, ε and μ can have
common poles, which leads to an unphysical situation, i.e. the
occurrence of second-order poles in the product εμ in spite of
the linear response.

In the absence of chiral symmetry, however, E1 and M1
(+E2) transitions are grouped into different excited states.
Namely, there is no excited state |ν〉, making both Īν0 and Q̄ν0

nonzero. In this case, we may divide the ν summation into two
groups as (c/ω)2χem = χ̄e + χ̄m, where χ̄e and χ̄m are the
partial summations over ν for E1 and M1 (+E2) transitions,
respectively, defined as

χ̄e = 1

ω2

∑

ν

Nν [ḡν(ω)Ī0ν Īν0 + h̄ν(ω)Īν0Ī0ν], (22)

χ̄m = k2

ω2

∑

ν

Nν [ḡν(ω)(k̂ · Q̄0ν)(k̂ · Q̄ν0)

+ h̄ν(ω)(k̂ · Q̄ν0)(k̂ · Q̄0ν)] (23)

for a unit vector k̂ = k/|k|. In this case, the dispersion
equation takes the form det|(c2k2/ω2)−(1+4πχ̄e+4πχ̄m)| =
0, which should be compared with the conventional form, (21),
det|(c2k2/ω2) − (1 + 4πχe)(1 + 4πχm)| = 0. It appears
that, even in this simplified case, the two forms of dispersion
equation are still different. However, if we use, instead of χm,
the more fundamental magnetic susceptibility χB defined by
M = χBB (see section 3.1 for more details), we have μ =
1+4πχm = (1−4πχB)−1. Then, the conventional form can be
rewritten as det|(c2k2/ω2)−(1+4πχe +4πχBc2k2/ω2)| = 0,
where the contributions of E1 and M1 transitions appear as a
sum and the χB term is multiplied with the factor of O(k2). The
relationship between (χ̄e, χ̄m) and (χe, χm) is obtained from the
comparison of O(k0) and O(k2) terms of the two dispersion
equations as

χe = χ̄e, χB = (ω/ck)2χ̄m. (24)

In this way the equivalence of the new and conventional
dispersion equations is demonstrated in the absence of chiral
symmetry.

4
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The above argument gives the answer to all the problems
(i)–(iv) in the introduction. (i) Since we do not separate I

into different components, there arises no problem of non-
uniqueness. (ii) The electric and magnetic susceptibilities
(χe and χB) correspond to the first-and second-order terms,
respectively, of the LWA expansion of the microscopic
susceptibility χ(r, r′, ω), in the absence of chiral symmetry.
Namely, they are two tensors derived from a single nonlocal
susceptibility. (iii) The (apparently) different wavenumber
dependence of the two M1 transitions arises from the
different ways of description, i.e. χm (or χB) in the case
of spin resonance [6] and χ̄m in the case of orbital M1
transition [7]. (iv) The apparent difference in dispersion
equation is reconciled by the use of χB instead of χm in the
conventional description.

3. Discussions

3.1. Microscopic derivation of magnetic susceptibility

In order to derive χe and χm from the quantum mechanical
calculation of P and M as linear response, we need an
interaction term proportional, not to A as in (3), but to E and
H . An expression close to this can be properly obtained by
making use of the fact that the addition of a total time derivative
of arbitrary function (of time and position) does not affect the
least action principle of the Lagrangian, i.e. we add the term
F(t) = (d/dt)

∫
dr P ·A/c to the Lagrangian (1) [2, 17]. The

combination of this term with Hint, (3), leads to a new form of
the interaction Hamiltonian as

H ′
int = −

∫
dr {P · ET + M ·B}, (25)

by the use of partial integration and ET = −(1/c)(∂A/∂ t),
B = ∇ × A.

The operator form of P and M , satisfying the
requirements ∇ · P = −ρ, J = (∂P /∂ t) + (1/c)∇ × M
(for charge neutral system) is known (section IV.C of [2]) as

P (r) =
∫ 1

0
du

∑

�

e�r�δ(r − ur�), (26)

M(r) =
∫ 1

0
u du

∑

�

e�r� × v�δ(r − ur�), (27)

which enables us to calculate induced electric and magnetic
polarizations with H ′

int as a perturbation. The result of such
a calculation should, however, be given as a functional of,
not E and H , but E and B. Moreover, for the general case
of symmetry, both P · E and M · B terms in H ′

int should
contribute to both of the induced polarizations, i.e. we should
obtain P (E,B) and M(E,B). This does not lead to the usual
definition of susceptibilities.

Only in the absence of chiral symmetry, where there is no
mixing of E1 and M1 transitions, is P induced by E alone, and
M by B alone, and this allows the definition of electric and
magnetic susceptibility. In this case, however, a perturbation
calculation similar to the one used for χem(k, ω) (18), should
give induced magnetization, not as M = χmH , but as

M = χBB, since the interaction term (25) is linear in B. The
poles of χB correspond to the energies of magnetic excitations.
Then, the definition B = H + 4πM and M = χmH = χBB

leads to χm = χB(1 − 4πχB)−1 and μ = (1 − 4πχB)−1.
The last relation has provided an essential key to prove the
equivalence of the two dispersion equations in section 2.3.

The use of χB as the linear response coefficient for
magnetic excitations is a logical consequence from the first-
principles Lagrangian, but there is so much literature using χm

instead of χB. However, this paper is not the first one to claim
the use of χB; see [15] for example. A proposal is made in
section 3.5 to show an observable difference between the use
of χm and χB for analysis.

3.2. Comparison with other schemes of macroscopic M-eqs

There have been several proposals of single susceptibility
schemes of macroscopic M-eqs [8, 9, 14], which are apparently
motivated by the argument of Landau–Lifshitz [4] that, as
frequency increases, magnetization tends to lose its physical
meaning, i.e. it becomes meaningless to separate current
density into the contributions of P and M . This is rather
similar to our motivation, but ours is one step stronger. Namely,
‘for any frequency region, we need only one vector field
I as in microscopic M-eqs, and it should be possible to
write macroscopic M-eqs and constitutive equations without
separating I into the contributions of P and M ’.

In both of the proposals, they derive the microscopic
forms of induced current density, from which one could derive
conductivity and translate it into dielectric function. The
calculation of current density is equivalent to that of this paper.
As to the translation of conductivity into dielectric function,
it is a standard matter in the absence of chiral symmetry, but
it is questionable if one can do it also for the chiral case.
The authors of [8] call their scheme the ‘E,D,B’ approach.
In the same manner, we might call ours the ‘(macroscopic)
E,B’ approach. In [9], they describe the case of dipole
approximation, which corresponds to our O(k0) term of χem.
Our results in section 2 show the importance of the whole
set of ‘O(k0), O(k1), O(k2)’ terms of the Taylor expansion
to obtain the consistent picture of a single susceptibility
scheme of macroscopic M-eqs free from the incompleteness
problems (i)–(iv) in section 1. Both of [9] and [14] stress
the importance of distinguishing the presence and absence of
spatial dispersion within the macroscopic M-eqs, but we regard
it simply as the different order terms of Taylor expansion
within LWA. The ‘O(k1), O(k2)’ terms do not increase the
number of coupled (polariton) modes, so that this is not a
type of spatial dispersion effect requiring additional boundary
conditions. In spite of the similarity in motivation and parts of
the formulas, neither of them show any systematic expansion
of the microscopic constitutive equation to obtain a generalized
form of macroscopic M-eqs. In this sense, we may claim that
the present method and result represent a more complete level
of single susceptibility scheme.

There is a different approach to macroscopic M-eqs by
Nelson [18], where he applies LWA to the Lagrangian of
a matter–EM field system, rewriting it into a ‘continuum’
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Lagrangian. The explicit use of LWA in the mathematical
treatment is a common feature to the present theory, but the
physical meaning is quite different. By the application of
LWA to the Lagrangian, the dynamics of matter is described
only by the long wavelength (LW) components, i.e. the LW
eigenmodes of matter such as acoustic and optical phonons
and excitons. Thus the only contribution to susceptibility is
made from the LW modes of matter, i.e. the susceptibility
has poles only at the frequencies of these LW modes. Since
all the dynamical variables of short wavelength components
are eliminated by the LWA of the Lagrangian, there is no
chance for localized eigenstates of the matter to contribute
to susceptibility. When we consider a problem, for example,
of changing the refractive index of a material by adding
impurities, the main change is caused by the localized
excitations at the impurities. But they cannot be taken into
account in Nelson’s treatment, because they are not LW modes
of matter. In contrast, our approach based on the LWA of
microscopic constitutive equations takes all the contributions
of the eigenmodes of matter according to their weights in
LWA, i.e. oscillator strengths. Thus, our approach provides a
continuous relationship between microscopic and macroscopic
descriptions of the EM response, including the method to
evaluate the validity condition of the LWA (see section 3.6).

3.3. Theoretical schemes for chiral symmetry

Having shown the equivalence of the new and conventional
macroscopic M-eqs in the absence of chiral symmetry, we now
make the comparison in the case of chiral symmetry between
the new scheme and the existing one, the Drude–Born–Fedorov
(DBF) constitutive equations, which extends the definition of ε

and μ in such a way to allow the possibility of ‘magnetic field
induced P ’ and ‘electric field induced M ’. The form of DBF
equations for a homogeneous isotropic case is [19]

D = ε(E + β∇ × E), B = μ(H + β∇ × H), (28)

where the new parameter β (chiral admittance) takes care of
chiral symmetry.

This set of equations allows us to describe, for example,
different phase velocities of right and left circularly polarized
lights for finite value of β . By solving the M-eqs c∇ ×
H = ∂D/∂ t, c∇ × E = −∂B/∂ t and the DBF
equation simultaneously, we get the dispersion equation

(
ck

ω

)2

= εμ

(
1 ± βω

c

√
εμ

)−2

. (29)

The ± sign in front of β describes the two possible values of k
for a given ω, leading to different phase velocities.

This dispersion equation is obviously different from (20)
with respect to their pole structure on the rhs. In fact, while the
corresponding part of (20) is a superposition of single poles
of χem representing the excitation energies of matter, the rhs
of (29) has a more complicated pole structure, i.e. higher-
order poles and the poles not corresponding to matter excitation
energies. Since E1 and M1 characters of matter excitations are
mixed in chiral materials, the successful trick in section 2.3 to

divide χem into χe and χB in the absence of chiral symmetry
fails in this case. Thus the DBF equations cannot be justified
from a microscopic basis, i.e. we cannot obtain the quantum
mechanical expressions of ε, μ, β consistent with χem. It is
preferable to use χem with the k-linear term to take care of the
chiral nature, rather than the DBF equations.

Chiral symmetry of matter leads to the interference of
electric and magnetic polarizations. It has been studied in
various cases, such as the rotation of polarization plane [19],
the mixing effect between electric and magnetic dipole
characters, e.g. of the excitons in CdS [20] and the coupled
‘Landau level–spin flip’ transitions in GaAs [21], and the
Jones effect in atomic spectroscopy [22]. Microscopic analysis
of these effects, essentially corresponding to the microscopic
nonlocal response in section 2, is shown in [20–22]. When we
treat chiral symmetry in macroscopic response under resonant
conditions, the argument of pole structure given above suggests
we should avoid using the DBF equations.

3.4. Definition of left-handed materials (LHMs)

Considering that χe and χB can be properly defined only in
the absence of chiral symmetry, we should reconsider the
definition of LHMs by Veselago, i.e. ε < 0, μ < 0 [12],
because LHM is possible also in chiral symmetry. For that
purpose, it would be appropriate to use ‘the occurrence of a
dispersion branch with vph × vg < 0’, where vph and vg are
phase and group velocities, respectively. This is one of the
characteristics of LHM described by Veselago, but it has a
more general applicability as a definition of LHM. LHM can
be made of materials with or without chiral symmetry. Though
it is recommended to use χem in general, it is possible to use the
conventional ‘ε, μ’ scheme in the absence of chiral symmetry
under the condition of using χB as the magnetic susceptibility.

The part of positive vg in the negative k region is important
because the plane wave on this part of the branch should be
connected to the incident EM field via the boundary conditions
at the interface. When two (or more) plane waves exist
in the medium at the frequency of an incident wave, the
general criterion for the correct choice of the branch is that
the connected wave in the medium should not diverge as the
size of matter becomes larger. From a general consideration
of the dispersion curves in the complex (ω, k) plane [23], it is
concluded that the choice of the branch with positive vg meets
this criterion. Physically, this means a simple fact that the plane
wave with positive vg decays in the direction of its propagation.
Therefore, it applies to any dispersion curves of either right- or
left-handed character.

3.5. Observable difference in using χm or χB

We consider a LHM situation in the absence of chiral
symmetry where a magnetic transition occurs in the frequency
region where 1 + (4πc/ω2)χ̄e (=εb) < 0. Let us consider
the two cases to assign the resonant frequency ω0 of the
magnetic transition: (A) χm = b/(ω0 − ω − i0+), (B) χB =
b/(ω0 − ω − i0+), where b is the strength of the transition.
The corresponding dispersion relations are (A) (c2k2/ω2) =
εb[1 + (4πb)/(ω0 − ω − i0+)], (B) (c2k2/ω)2 = εb/[1 −
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Figure 1. Reflectivity versus normalized frequency ω/ω0, showing a
transmission window in the total reflection range. The parameter
values εb = −1 and 4πb/ω0 = 0.001 are used. Two curves for case
(A) and (B) are almost identical, except for their positions with
respect to the resonant frequency ω/ω0 = 1.

(4πb)/(ω0 −ω− i0+)]. The solution of this equation gives the
dispersion relation k = k(ω) and refractive index n = ck/ω,
with vph × vg < 0. For the positive vg branch of LHM
behavior, k and n are negative. The reflectivity spectrum R =
|(n+1)/(n−1)|2 (n < 0) of a semi-infinite medium for normal
incidence is shown in figure 1. The remarkable point is the
relative position of ω0 with respect to the reflectivity dip due to
the LHM branch. In (A), ω0 occurs on the lower frequency end
of the window, and in (B) on the higher frequency end. This
could be checked experimentally, via an appropriate model
system, e.g. a magnetic resonance of well-defined impurities
overlapping with an E1 type phonon resonance.

3.6. Validity of LWA

In section 2.2, we have used the LWA, assuming its validity
for systems under consideration. The validity condition of
LWA is not provided by the macroscopic theory itself, but must
be checked independently through the microscopic scheme in
section 2, where all the wavelength components are included
in the response field. Only when the amplitudes of the short
wavelength components are small enough in comparison with
the LW components, is the LWA a good approximation.

The validity condition of the LWA is closely connected
with the resonant or non-resonant condition of the optical
process in question. In resonant optical processes, only a
few excited states will be resonant with incident frequency,
and they will make the main contribution to the induced
current density. Thus, the current density acquires a
characteristic microscopic spatial structure reflecting the
quantum mechanical wavefunctions of the resonant excited
states. All the other non-resonant states make contributions of
more or less comparable amplitudes, so that their superposition
will have no particular microscopic structure. Therefore,
non-resonant processes could generally be handled by a
macroscopic scheme, and resonant processes should mostly
be treated by microscopic theory. However, the resonant

processes due to uniformly distributed well-localized impurity
states could be treated by the macroscopic theory, as far as one
considers the average properties of these localized states.

4. Summary

Applying LWA to the microscopic response of a matter–EM
field system represented by a general Hamiltonian (including
relativistic correction), we have derived new macroscopic
M-eqs, which require only a single susceptibility χem(k, ω)

relating induced current density with vector potential. These
M-eqs are more general than the ‘E,D,B,H’ scheme. The
conventional description by ε and μ is recovered in the absence
of chiral symmetry, under the additional condition that one
should use χB instead of χm. The phenomenology of DBF
equations used for the description of chiral materials has been
shown to be unjustifiable from this microscopic basis. The
dispersion equation det|(ck/ω)2 − 1 − (4πc/ω2)χem| = 0,
is valid both in the presence and absence of chiral symmetry.
The problems of uniqueness and consistency inherent to
conventional M-eqs are solved by this new scheme. An
observable difference in using χB or χm is demonstrated, and
discussions about the comparison with existing theories are
given.

Acknowledgments

This work was supported in part by the Grant-in-Aid
for Scientific Research (No. 18510092) of the Ministry
of Education, Culture, Sports, Science and Technology of
Japan. The author is grateful to Professors K Shimoda,
K Ohtaka, F Bassani, G La Rocca, W Brenig, M Saitoh, and
M-A Dupertuis for useful discussions and comments.

References

[1] Lorentz H A 1916 The Theory of Electrons (Leipzig: Teubner)
[2] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1989

Photons and Atoms (New York: Wiley)
[3] Schwinger J (ed) 1958 Selected Papers on Quantum

Electrodynamics (New York: Dover)
[4] For example, Landau L D and Lifshitz E M 1960

Electromagnetics of Continuous Media (Oxford: Pergamon)
van Vleck J H 1932 Theory of Electric and Magnetic

Susceptibilities (Oxford: Oxford University Press)
Jackson J D 1999 Classical Electrodynamics 3rd edn

(New York: Wiley)
[5] Cho K 2007 Proc. 28th Int. Conf. on Physics of Semiconductors
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